
Debugging Framework for
FPGA-based Soft Processors

David Sidler
Dept. of Computer Science, ETH Zürich

david.sidler@inf.ethz.ch

Ken Eguro
Microsoft Research, Redmond

eguro@microsoft.com

Abstract—Soft processors are one way to raise the compu-
tational abstraction of FPGAs while keeping the advantages of
reconfigurable hardware, such as adaptability, deterministic per-
formance and high performance/watt. Software developers can
quickly build, test and deploy applications using familiar tools
while still leveraging important optimizations such as application-
specific custom instructions. However, they also present unique
debugging problems. For example, the higher-level programming
abstraction runs contradictory to classical low-level debugging
tools like logic analyzers. In this work we present a debugging
framework for FPGA-based soft processors that enables step-by-
step debugging at the level of all soft processor instructions, time-
travel debugging, post-mortem memory dumps, and performance
metrics. By using knowledge about the soft processor’s internals,
our framework can capture execution traces up to 60x more
space-efficient than traditional embedded logic analyzers.

I. INTRODUCTION

Historically data centers have been using general-purpose
processors, but specialized hardware, such as FPGAs, GPUs,
and NPUs, has become increasingly popular thanks to their
bandwidth, latency, and performance/watt advantages. At the
same time, though, the nature of modern data center and
cloud applications highlight resiliency and agility. This makes
ease of code creation, code maintenance and interoperability
between different platforms critical. This is an area in which
traditional HDL-based FPGA implementation has been weak.

Raising the programming abstraction is a popular solution
to improve the developer experience. One way to achieve this
is through language-to-gate flows such as OpenCL [1], [2],
HLS [3], [4], [5] and domain specific languages [6]. Most
of these languages are compiled to RTL before entering the
traditional FPGA tool suites. For developers only familiar with
the high-level abstraction, debugging compiler-generated code,
much less debugging on the hardware itself, is simply too
difficult. Therefore, they rely on early high-level simulations
to verify and debug their applications. This limits the type
of issues that can be detected, for example finding and
addressing problem with I/O peripherals, timing, or signal
integrity generally requires debugging on a live-running cir-
cuit. Another way of raising the programming abstraction is
through soft processors [7], [8] which retain many of the
advantages over C-to-gate style tool-flows while avoiding their
limitations. Not only provide soft processors a programming
abstraction that is completely familiar to traditional software-

only developers, but can also incorporate custom instructions
for specific applications unlocking the low power and high
performance that has become the hallmark of FPGA-based
specialized hardware. Furthermore, soft processors have the
ability to load and execute different programs with far less
compilation effort and run-time disruption.

However, debugging code running on a soft processor can
still be complicated. First, even debugging tools of commercial
soft processors such as the Nios II have relative primitive
capabilities - limited to simple step-by-step execution, the
examination of memory locations and the register file. Second,
highly optimized soft processors that incorporate many cus-
tom instructions present another challenge. These monolithic
CISC-like operators must be instrumented with traditional
embedded logic analyzers, e.g., Xilinx Chipscope [9] or Altera
SignalTap [10]. Unfortunately, using these tools effectively
requires time and a depth knowledge of the internals of the
processor and overall hardware design techniques that are
contrary to the original promise of ease-of-use.

In this paper we describe an easy-to-use yet sophisticated
debugging framework for soft processors. It supports basic
features, such as step-by-step execution and halting execution
with breakpoints, along with more advanced features such
as time-travel debugging and automatic performance metrics.
Using this framework, we instrumented a CISC-like stack pro-
cessor, however we believe the lessons learned from this work
are general and can be applied to other soft processors. One
specific takeaway from this work is that while indiscriminate
instrumentation will guarantee that all relevant information
necessary for debugging will be captured, it is exceedingly
inefficient. This work shows that by using knowledge of
how specific structures are used we can support sophisticated
debugging capabilities with minimal additional resources.

II. SOFT PROCESSOR

The soft processor we instrumented with our debugging
framework implements a Trusted Machine (TM) as used in
Cipherbase[11]. Cipherbase is a databse system that stores
and processes strongly encrypted data. The FPGA-based
Trusted Machine implements a stack machine that evaluates
expressions from SQL queries. Despite using our debugging
framework with this specific soft processor, we consider the

978-1-5090-5602-6/16/$31.00 c© 2016 IEEE

Programs/
constants

Inputs

Outputs Scratch
w/Debug

Stack
Debug

Manager

Trigger
Logic

Trace

Debug
Controller

Output
Multiplexer

R
ou

te
r

Soft Processor [1..N]
Debug Unit Debug Proc.

P
C

Ie

Fig. 1: Instrumentation of the soft processor with the Debug
Unit and the Debug Processor

method presented in this paper to apply to a wider range of
soft processors, and not only to our specific design.

Since the internal processing abstraction in Microsoft’s SQL
server is a stack machine, this was used for the TM in
Cipherbase. The stack machine, see Fig. 1, has multiple
memory banks: the program memory which holds multiple
programs, the input memory which holds the input data, the
output memory where the results are written to, and a stack
which holds operands and intermediate values. This processor
includes an enhancement beyond the traditional stack machine
architecture, a scratch memory. This scratch memory is used
to optimize execution and eliminate repeated computation. All
intermediate results are appended to the scratch memory and
can be referenced later, thereby avoiding their recomputation.

The stack-based nature of the TM offers both opportunities
and challenges for efficient remote debugging. For example, as
will be discussed in more detail later, while there is potentially
a large amount of intermediate state contained in the stack,
if the debugging framework is aware of and can leverage
the fact that the stack memory is indeed used as a stack,
we can record and transmit incremental changes efficiently.
Another aspect we consider is the different access modes of the
various memories. For example, during program execution the
program and input memory are read-only, the output memory
is write-only and the scratch memory can be read from any
location, but new results written to scratch are only appended.

III. HARDWARE DEBUGGER

A. Instrumentation of the Soft Processor

The soft processor was instrumented with debug and trace
logic as shown in Fig. 1. The debug logic consists of the Debug
Units which is inserted into each soft processor and a single
Debug Processor located externally. The Debug Processor is
connected to its own PCIe channel and receives commands
from the host which it forwards to the corresponding Debug
Unit. The content from different memories can be send through
the Output Multiplexer to the host. Separating the debug
logic into Debug Processor and Debug Unit minimizes the
amount of logic inserted into the soft processor to not alter
its execution model and allows debugging of multiple soft
processors simultaneously through a single Debug Processor.

The Debug Unit can execute the following commands
halting, resuming, and single-stepping program execution. It
consists of three parts, the Trigger logic, the Debug Manager,

IC PC Instruction
0 0 LoadInput
1 1 LoadInput
2 2 Comp
3 3 Out

IC Cmd Mem. Type Off. Len.
0 PUSH INPUT VAR 0 6
1 PUSH INPUT VAR 1 5
2 POP INPUT VAR 0 5
2 POP INPUT VAR 1 6
2 PUSH SCRT. FIX32 0 4
3 POP SCRT. FIX32 0 4

Trace Trace Operands

Fig. 2: Trace for example program

and the Trace module. The Trigger logic is responsible for
keeping track of the breakpoints set by the developer and
halt program execution when a breakpoint is reached. This
is implemented through a bitvector, where each bit represents
a line of code in the program. This bitvector is compared
to the current program counter. The Debug Manager handles
the incoming commands, resumes and halts execution of the
current program or initiates a memory read-out which forwards
the data to the Output Multiplexer. The Trace module contains
internally two trace buffers implement in BRAM. The first one
stores the instructions and the second one the operands.

B. Debugger Interface

The interface exposed to the host reflects functionality
common in software debuggers. To interact with the hardware
debugger the host sends messages over PCIe to the FPGA. A
message contains a command, an optional argument, and the
index of the soft processor targeted. The commands are:

• ENABLE DEBUG, enables the hardware debugger.
• HALT EXEC, halts the program execution at the end of

the current instruction.
• CONTINUE EXEC(BOOL singleStep), resumes

execution when program was halted before. In case
singleStep is TRUE the execution is resumed only
for a single instruction.

• SET BREAKPOINT(UINT loc), sets a breakpoint
for the instruction at position loc in the program.

• UNSET BREAKPOINT(UINT loc), removes the
breakpoint at position loc in the program.

• GET DUMP(ENUM mem), dumps the content of a
memory specified by mem to the debug output. This is
used to dump the scratch or trace memory.

IV. TRACE RECONSTRUCTION

To illustrate the trace generation and reconstruction we
introduce a short example program. The program loads two
strings, alpha and beta, from the input memory and pushes
them onto the stack. Then these two strings are popped from
the stack and compared to each other. The resulting value -1
is pushed onto the stack. In the last instruction this value is
then popped from the stack and written to the output memory.

The trace generated by this example program is stored in
the two trace memories, Trace memory and Trace Operands
memory, as shown in Fig. 2. For each instruction an entry is
added to the Trace memory containing the instruction counter
(IC), program counter (PC) and the instruction name. Since

an instruction can have multiple operands, for instance the
Comp instruction in our example program, the trace data about
the operands is stored in a separate memory. This separation
leads to a memory conscious implementation which makes no
assumptions about the number of operands an instruction can
have. The Trace Operands memory stores for each operand,
the instruction counter, the memory operation and location,
and the data type. Entries in the two memories can be linked
through the IC. The memory descriptors in the linked entries
can be resolved through the memory readouts leading to a
complete human-readable trace. Since, the constants, input,
scratch, and output memory are not modified during program
execution, it is sufficient to only store memory descriptors.

V. DEBUGGER CAPABILITIES

The interface to the Hardware Debugger provides all func-
tionalities required for software-like step-by-step debugging.
Further the execution trace can be reconstructed by reading
out the memories of the stack machine.

Step-by-Step Execution: Using our debugging framework
the programmer can set breakpoints to halt the program at the
instructions of interest. She can also single-step through the
program or halt it at the next instruction.

Time-Travel Debugging: By reconstructing the complete
trace, the programmer can track all intermediate steps and
results since the start of the program. In Cipherbase, there are
known upper limits on the number of executed instructions.
Thus, we can provision the trace buffers in hardware to have
enough space to hold the complete trace. But in any case, it
is possible to go back in time for a few hundred instructions
tracking the events leading to the current state of the program.

Post-mortem Debugging: To our knowledge this functional-
ity was not yet explored in FPGA-based designs. Post-mortem
debugging allows the retrieval of valuable information after the
program crashed, similar to memory or core dumps in software
environments. Since the framework continuously collects data
about the execution of the current program, in case of a
program crash a memory read-out can be triggered by the
software debug thread. The programmer can then time-travel
through the reconstructed trace which lead to the crash. This
functionality can be very useful in production deployment or
FPGA-based distributed systems, e.g. [7], [12].

Performance Counters: The Trace module keeps for each
instruction track how long its execution took (in cycles). This
is valuable feedback to programmers who are not familiar with
the internals of the stack machine.

VI. EVALUATION

For our evaluation, we focus on two metrics, the amount of
memory required to store a program trace and the overhead
in resource usage due to the debugger and trace logic. The
evaluation was done on an Altera Stratix V D5 FPGA.

A. Reduction in Trace Size

In TABLE I we compare trace size capturing three different
programs using either our framework or Altera SignalTap. The

TABLE I: Reduction in Trace Size

#Instr. #Oper. Exec.
cycles

Our Trace
[bit]

SignalTap
[bit] Ratio

Ex. Prog. 16 24 182 1,736 45,384 1:16
Prog II 24 30 596 2,298 147,808 1:64
Prog III 67 1,408 1,739 7,652 431,272 1:56

TABLE II: Resource Overhead

ALMs M20Ks
#Soft Proc. 1 2 4 1 2 4
Soft Proc. only 10,552 20,400 40,941 119 234 464
Instr. Soft Proc. 11,089 21,896 45,259 128 248 488
Overhead [%] 5.1 7.3 10.5 7.6 6.0 5.2

first program is the example program used in section IV,
the other two programs are not discussed in detail since
they are used in Cipherbase. However for each program the
number of instructions, operands, and execution cycles is
listed. Using these numbers the size of the trace for the two
different approaches is calculated. Unlike, SignalTap which
stores the value of every interesting signal in each cycle, our
framework only stores data when a new instruction or operand
is loaded. As a result, SignalTap requires 26-64 times more
memory in comparson to our approach when capturing the
same information about the program execution. This means
our framework can capture an up to 64 times longer program
trace than SignalTap.

B. Resource Usage

TABLE II shows the resource overhead for different deploy-
ments using 1, 2 or 4 soft processors. The overhead in ALMs
is in the range of 5-10%, mostly due to increased connectivity
and arbitration between the Debug Processor and the different
Debug Units. The overhead in additional BRAMs used to store
the trace is slightly lower at 5-7.5 %. This means that for a less
than 10% increase in resources the circuit can be instrumented
with our Hardware Debugger. We consider that our debug and
trace logic is also very valuable in production deployments,
however it can be removed to avoid the resource overhead.

VII. RELATED WORK

Prior Work has investigated ways to improve the debugging
experience for hardware circuits, thereby increasing produc-
tivity. These improvements can be categorized into four areas:
1) accelerating the debugging cycle, 2) improving visibility of
signals in a circuit under test, 3) enhancing controllability dur-
ing debugging (e.g., software-like step-by-step execution), and
4) debugging circuits implemented in a higher-level language.

A. Acceleration of the Debug Cycle

[13] showed a method to shorten the debugging cycle by
instrumenting a bitstream with debugging hardware, thereby
modifying the trigger and capture signals without a com-
plete recompilation. Similarly, [14] use incremental synthesis
techniques to insert the debug logic after place and route
into the circuit. Since our framework debugs at the level of

soft processor instructions without modifying the underlying
hardware, the debug cycle is in the range of seconds.

B. Visibility and Controllability

Visibility and controllability are often provided together,
since the latter is often a requirement for the former. Readback
a feature available in some older FPGA devices [15] and
scan-chains[16], [17], [18] have the ability to read out the
entire state of an FPGA circuit. Scan-chains consist of scan-
registers which are linked together into a chain. However,
scan-chains introduce a significant overhead in resource usage,
a 84% increase was shown by [16]. Further, scan-registers
can alter the timing behavior of a design. Both methods
have to halt the circuit to extract a consistent state, this
is commonly implement by disconnecting the clock signal
from the main logic. However, halting the circuit makes
it impossible to test the circuit at normal execution speed.
Rendering these methods unsuitable for debugging interac-
tion with I/O peripherals. Given the slow readout process,
debugging at a cycle-granularity is not time-efficient and it
might vanish any speed gain of hardware debugging over
simulation. [19] addressed this by introducing watch-points to
halt the circuit in predefined potentially interesting states. Our
debugging framework provides visibility by collecting trace
data for each executed instruction and controllability through
contextual breakpoints in the high-level program or single-
stepped execution, giving the developer the choice between
high-scale and detailed debugging.

C. Debugging for High-level Languages

One major challenge when debugging high-level languages
which compile to RTL, is to determine a meaningful map-
ping between the high-level code and the physical hardware
implementation. The compiler can apply many transforma-
tions and optimizations to the programmers’ code. Many
approaches[20], [21], [22] which correlate RTL to high-
level code use the resulting mappings to automatically detect
discrepancies between the high-level code and the compiler-
generated hardware implementation. This functionality can
detect bugs in the compiler and synthesis tool, but not at the
application level. [21] provides this functionality as part of
a framework which also introduces variable inspection and
watch-points for preselected variables. Since our framework is
debugging at the program-level, a mapping between program
instructions and RTL is not required.

Similar to embedded logic analyzers, HLS debuggers have
limited capacity to capture signals. HLS tools must preselect
signals, possibly using user-defined watch-points, to obtain the
most relevant information for the application developer. [23]
presented a technique to maximize the amount of information
that can be collected in a fixed size trace buffer by applying
knowledge of the circuit and its signals to compress the
trace without losing valuable information. Our framework
collects trace data at the granularity of program instructions,
thereby benefiting from a natural compression by only storing
information valuable and understandable to the developer.

VIII. CONCLUSION

We presented a debugging framework for soft processors
addressing the following areas of FPGA debugging: Quick
debugging-cycle, visibility and controllability of the circuit,
and debugging at a high abstraction level. In addition to com-
mon features such as stepwise execution, the framework in-
troduces time-travel debugging and post-mortem trace dumps.
These two features are especially useful in production deploy-
ment, where rare bugs occur occasionally and the developer
is only informed after the fact. On top of functional debug-
ging, the performance counters in the trace allow for basic
performance debugging. Despite those sophisticated features,
the introduced resource overhead is minimal. This is achieved
by using knowledge about the internal structure of the soft
processor. We demonstrated the applicability of the framework
on a CISC-like stack processor, however we believe that the
lessons learned in this work also apply to other soft processors.

REFERENCES

[1] Altera, “Programming FPGAs with OpenCL,” https://www.altera.
com/content/dam/altera-www/global/en US/pdfs/literature/wp/
wp-01173-opencl.pdf.

[2] Xilinx, “Xilinx SDAccel,” http://www.xilinx.com/publications/prod
mktg/sdx/sdaccel-wp.pdf.

[3] A. Canis, J. Choi, M. Aldham et al., “LegUp: High-level synthesis for
FPGA-based processor/accelerator systems,” in FPGA’11.

[4] Xilinx, “Vivado Design Suite User Guide: High-Level Synthesis,”
http://www.xilinx.com/support/documentation/sw manuals/xilinx2015
4/ug902-vivado-high-level-synthesis.pdf.

[5] R. Nikhil, “Bluespec system verilog: efficient, correct RTL from high
level specifications,” in MEMOCODE’04.

[6] J. Bachrach, H. Vo, B. Richards et al., “Chisel: Constructing hardware
in a scala embedded language,” in DAC’12.

[7] A. Putnam, A. Caulfield, E. Chung et al., “A reconfigurable fabric for
accelerating large-scale datacenter services,” in ISCA’14.

[8] K. Ovtcharov, O. Ruwase, J.-Y. Kim et al., “Accelerating deep convolu-
tional neural networks using specialized hardware,” Microsoft Research
Whitepaper, vol. 2, 2015.

[9] Xilinx, “ChipScope Pro 10 Software and Cores User Guide,” http://www.
xilinx.com/ise/verification/chipscope pro sw cores 10 1 ug029.pdf.

[10] Altera, “Quartus II handbook volume 3: Verification,” vol. 3, 2015.
[11] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann et al.,

“Orthogonal security with cipherbase,” in CIDR’13.
[12] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a box:

Inexpensive coordination in hardware,” in NSDI’16.
[13] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting bitstreams for

debugging FPGA circuits,” in FCCM’01.
[14] E. Hung and S. J. E. Wilton, “Incremental trace-buffer insertion for

FPGA debug,” VLSI, vol. 22, no. 4, pp. 850–863, April 2014.
[15] Xilinx, “Virtex FPGA series configuration and readback,” Application

Note XAPP 138, 2005.
[16] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using design-

level scan to improve FPGA design observability and controllability for
functional verification,” in FPL’01.

[17] M. Renovell, P. Faure, J. Portal, J. Figueras, and Y. Zorian, “IS-FPGA
: a new symmetric FPGA architecture with implicit scan,” in ITC’01.

[18] D. Koch, C. Haubelt, and J. Teich, “Efficient hardware checkpointing:
Concepts, overhead analysis, and implementation,” in FPGA’07.

[19] A. Tiwari and K. A. Tomko, “Scan-chain based watch-points for efficient
run-time debugging and verification of FPGA designs,” in ASP-DAC’03.

[20] P. Fezzardi, M. Castellana, and F. Ferrandi, “Trace-based automated log-
ical debugging for high-level synthesis generated circuits,” in ICCD’15.

[21] N. Calagar, S. Brown, and J. Anderson, “Source-level debugging for
FPGA high-level synthesis,” in FPL’14.

[22] L. Yang, S. Gurumani, D. Chen et al., “AutoSLIDE: Automatic source-
level instrumentation and debugging for HLS,” in FCCM’16.

[23] J. Goeders and S. Wilton, “Using dynamic signal-tracing to debug
compiler-optimized HLS circuits on FPGAs,” in FCCM’15.

