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Abstract—The realization that the network is becoming an
important bottleneck in computing clusters and in the cloud has
led in the past years to an increase scrutiny of how networking
functionality is deployed. From TCP Offload Engines (TOEs) to
Software Defined Networking (SDN), including Smart NICs and
In-Network Data Processing, a wide range of approaches are
currently being explored to increase the efficiency of networks
and tailor its functionality to the actual needs of the application
at hand. To address the need for an open and customizable
networking stack, in this paper we introduce Limago, an FPGA-
based open-source implementation of a TCP/IP stack operating at
100 Gbit/s. To our knowledge, Limago provides the first complete
description of an FPGA-based TCP/IP stack at these speeds,
thereby illustrating the bottlenecks that must be addressed,
proposing several innovative designs to reach the necessary
throughput, and showing how to incorporate advanced protocol
features into the design. As an example, Limago supports the
TCP Window Scale option, addressing the Long Fat Pipe issue.
Limago not only enables 100 Gbit/s Ethernet links in an open
source package, but also paves the way to programmable and
fully customizable NICs based on FPGAs.

I. INTRODUCTION

The growing amount of data and the complexity of the

workloads that characterize modern distributed computing

have turned the network into a potential bottleneck [1].

Besides, in cloud environments, the network also limits the

number of virtualized/containerized applications that can be

deployed on a single server: The more CPU cycles needed to

deal with an increasingly complex networking stack, which

needs to provide not only TCP/IP packet processing but ad-

ditional functionality such as Network Function Virtualization

(NFV) or Remote Direct Memory Access (RDMA), the less

CPU cycles that are available to applications. In addition, the

trend towards specialization seen in cloud computing opens

up the possibility of tailored network designs through Smart

Network Interface Cards (NICs), which push application-level

processing to the network [2]. As a result, we are witnessing

a flurry of activity around programmable networks based on

a variety of designs and architectures.

A concrete example of these developments is provided by

Microsoft Catapult [3], a deployment of FPGAs in the cloud

that has evolved through several generations [4], [5]. The

current version inserts an FPGA on the data path between the

top of rack (ToR) switch and the server machine. Hence, all

network traffic in and out of the host goes through the FPGA.

The FPGA is then used to augment the network functionality

with system and application-level features. For instance, it can

be used as a customizable smartNIC to offload network virtu-

alization functionality [5], application-level functionality such

as RDMA packet processing to support key-value stores [6], or

for distributed machine learning algorithms [7]. Catapult is, by

far, not the only possible design. In IBM’s cloudFPGA [8], the

FPGA is deployed as a network-attached accelerator. Similarly,

Caribou [9] deploys FPGAs as storage nodes that extend

the TCP/IP stack with distributed consensus functionality (a

network function) [10] as well as scans and string processing

(application-level functionality) [9].

Promising as they are, for FPGA-based designs a challenge

remains: Scalability with increasing network bandwidth. To

address this challenge, in this paper we introduce Limago, an

open-source 100 Gbit/s TCP/IP network stack on an FPGA.

Limago explores the changes needed to upgrade an existing

open-source TCP/IP stack from 10 Gbit/s [11] to 100 Gbit/s,

but maintaining the same high-productivity design methodol-

ogy, based on Vivado-HLS, that was utilized in the previous

design. In doing so, Limago illustrates how to tackle the

problem of FPGA-based packet processing at such rates.

From the existing design, Limago inherits the scalability in

terms of the number of connections as well as the control

flow and congestion avoidance functionality. Limago not only

transforms and adapts these existing features to increase

the supported bandwidth from 10 Gbit/s to 100 Gbit/s, but

also contributes novel features widening its applicability. The

changes are non-trivial extensions of the existing stack. For

instance, the data path had to be widened by 8x and the

operating frequency doubled to reach the target bandwidth,

several low-level architectural changes and balanced pipeline

stages were necessary to meet timing, and accessory modules

were redesigned. Limago also incorporates functionality such

as the TCP Window Scale option, an extension to the basic

TCP/IP protocol, addressing the Long Fat Pipe issue.

Limago serves as a platform for further research in pro-

grammable networking and as a design guideline on how to

tackle high network bandwidths with FPGA-based systems.
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II. CHALLENGES AT 100 GBIT/S

Limago uses the 322 MHz clock provided by the integrated

100G CMAC, and a 512- bit AXI4-Stream interface. With

respect to the 10 Gbit/s version, that is an 8x increase in the

width of the datapath and more than a 2x increase in the

operating frequency. Moreover, the smallest packet (64- Byte)

just fits into a single transaction and, for such short packets, the

processing rate must be 148.8 million packets per second. The

greater data rate implies novel designs for several components

often taken for granted. For instance, existing SmartCAM

designs, used for flow identification, do not operate at such

frequency and a new solution is thus needed. Similarly, certain

optimizations are optional at lower rates, but a must at such

bandwidth. For instance, the Long Fat Pipe issue might not

be observable at 10 Gbit/s but must be addressed to reach

100 Gbit/s. This requires additional circuitry to support and

negotiate the TCP Window Scale option.

A. TCP/IP Checksum

Checksum computations are widely used when processing

TCP/IP packets. Limago uses an efficient implementation,

leveraging 7 to 3 Carry Save Adder (CSA) circuits [12] to

calculate the checksum within one clock cycle. The module

was written in HDL to achieve a low latency in this recurrent

circuit. Actually, this is one of the few modules of Limago

written in HDL; the vast majority of blocks are written in

Vivado-HLS. But in this case, an efficient and low latency

implementation was needed, impossible to achieve with the

Vivado-HLS version being used (2018.2). The circuit is de-

scribed in detail in [13].

B. CuckooCAM

The 10 Gbit/s version of the stack is based on the smart-

CAM [14] module provided by Xilinx. It used a four-tuple

consisting of IP source and destination addresses plus TCP

source and destination ports as a key. We replaced this module

with our own implementation, CuckooCAM, based on cuckoo

hashing and requiring one clock cycle for lookup and deletion.

In CuckooCAM, insertion time depends on the load factor

and occupancy can exceed 90% due to a secondary memory

structure known as a stash. It is clocked at 322 MHz, providing

more than 300 million lookups per second. The width of the

key and value are configurable; therefore, we have reduced

the size of the key to a three-tuple by removing Limago’s

own IP address, which does not change during operation.

The reduction of the key from 96- bit to 64- bit results in a

significant reduction in BRAM usage for this module (22%).

C. DRAM Memory Access

To support a large number of connections, the TOE uses

external memory for its receive and send buffers. In particular,

this is necessary for the send buffer, where the payload has to

be stored until it is acknowledged. For 100 Gbit/s, the resulting

requirements in terms of memory bandwidth are close to

the peak bandwidth provided by DDR4. Additionally, the

offsets into the receive and send buffer are determined by the

TCP sequence number. This can result in unaligned memory

accesses affecting the memory bandwidth further. Therefore,

we verified the viability of storing the buffers in external

DDR4-2400 through several microbenchmarks, varying the

memory-alignment as well as the access size. We observed

a peak bandwidth of 125 Gbit/s with 64- Byte aligned words

and approximately a 6% performance loss when transfers

were not aligned, thereby ensuring the design achieves enough

memory bandwidth for all cases. Since the buffers in external

memory are organized as a circular buffer, additional logic

is required to handle the wrap-around when the “end” of the

buffer is reached. Particularly, a single data transfer is split

into two transfers (one before the wrap-around and one after),

requiring data re-alignment. The HLS code for this module

was redesigned carefully to guide the synthesis tool to the

most efficient implementation involving a 64 to 1 multiplexer.

D. TCP Window Scale Option

Links with a large bandwidth× delay product suffer from

the Long Fat Pipe issue: those links where the bandwidth ×
delay product is larger than the buffer size [15]. The Window

Scale option is used to allocate any fix-size buffer in the range

of 216 to 230 bytes, thereby leading to a better usage of links.

Currently, Window Scale is the only supported TCP option

in Limago. Due to the lack of a standard TCP option layout,

the parsing of options is done sequentially, one clock cycle

each. Fortunately, the Window Scale option is only negotiated

during the initial three-way handshake, i.e., options are only

parsed once in the lifetime of a connection. The Window Scale

is set to the minimum value advertised by both endpoints.

Support for the Window Scale option has to be enabled at

synthesis.

Finally, the maximum number of connections depends on

the external DRAM capacity and the Window Scale factor, as

shown by Equation 1. DRAMb is the log2(DRAMSize) and

WSb is the log2(WindowScale). As an example, with 4 GB

of DRAM and a Window Scale of 128, 232−7−16 = 29 = 512
concurrent connections can be supported.

#conn = 2DRAMb−WSb−16 (1)

III. RELATED WORK

The benefits of TCP/IP offloading are well-known [16]–

[18]: reduced CPU utilization and bypassing of the Operating

System. In a TOE, packet processing is moved to the NIC,

whereas the control decision remains in the host. Nowadays,

most NICs offer some degree of offloading. In this section,

we focus on FPGA implementations of TCP/IP.

LDA technologies [19] offers an FPGA-based TOE. Their

solution includes independent transmitter and receiver mod-

ules. For sixteen connections, 44 BRAMs and 2,704 LUTs

are necessary. Published results for this TOE using Solarflare

NICs are based on 10 Gbit/s connections. Chevin Technol-

ogy [20] offers a 10/25 Gbit/s TCP/IP core, which can work

both as client or server. It supports 1 to 256 simultaneous

connections. The Tx and Rx buffers can be configured from
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1 KiB to 1 GiB, implying Window Scale support. For sixteen

connections, 5 BRAMs and 12,000 LUTs (plus the external

buffer) are necessary. Enyx [21] offers an RTL TOE solution

with up to 4,000 connections, but not further details about

resource utilization are provided. They also have announced

a 25 Gbit/s implementation [22]. Dini [23] offers a 10 Gbit/s

solution where the FPGA is used as a NIC. The buffer size

is configurable from 4 KiB to 64 KiB and it supports up

to 128 connections per instantiated IP-Core and out-of-order

packet delivery. Algo-Logic [24] supports full duplex rates up

to 20 Gbit/s per instance, claiming more than 200 Gbit/s can

be achieved with multiple instances. The design targets low

latency applications such as high-frequency trading.

The authors in [25] presented a comparison of three

10 Gbit/s alternatives: a pure software TCP/IP stack, a software

TOE with kernel-bypassing and a hardware TOE (Fraunhofer

HHI 10 GbE TCP/IP) with kernel-bypassing, concluding that

the hardware solution has less latency and a more determin-

istic behaviour. The work in [26] presents a complete TOE

implementation supporting jumbo frames and configurable

Maximum Segment Size (MSS) and timestamp. Only one

connection is supported with a 90 ns latency for a 100- Byte

packet. Their solution is compared against a commercial,

one achieving better latency. The paper in [27] introduces

a TCP implementation using XFSMs, which is claimed to

be “code-once-port-everywhere”. The implementation is tested

over three different architectures, software, FPGA, and NS3

emulator, reaching similar results. Probably, the closest work

to Limago is [28], an asymmetrical standalone TCP/IP im-

plementation oriented to video-on-demand, which supports

20,480 connections working as a client and 2,048 connections

working as a server. It also can send up to 40 Gbit/s but only

receive up to 4 Gbit/s. The starting point for Limago is a

10 Gbit/s TOE written by Sidler et al. in C++ using Vivado-

HLS [11], [29].

IV. LIMAGO ARCHITECTURE

Figure 1 shows Limago’s main components. We use AXI4-

Stream to interface with the application logic as well as with

the network modules. Since CMAC exposes an LBUS inter-

face, we added an adapter module that converts between AXI4-

Stream and LBUS. Rx and Tx checksum and CuckooCAM
are respectively presented in sections II-A and II-B.

Inbound Packet Handler: parses Ethernet and IPv4 head-

ers of every incoming packet. If the packet matches the filter,

the signal TDEST will carry a different identifier for each kind

of packet. Then an AXI4-Stream Switch forwards the packet

to the appropriated module. If the packet does not belong to

one of the previous categories, it is dropped.

ARP module: when an ARP request arrives and the IP

address matches, it generates an ARP reply packet. Its main

function is to associate IP addresses with MAC (physical)

addresses, which is done using a 256-element table. The

ARP module also receives MAC address requests from the

Outbound Packet Handler. If the entry is not present in the

table, an ARP request packet will be generated, and a miss

External DDR4

LBUS-AXI4-S Adapter

Inbound Packet
Handler

User programmes

ARP

TOE

Outbound Packet
Handler

Rx and Tx
checksum

ICMP

Application

CuckooCAM

MIGDMA
Subsystem

P
C

Ie

Host

Ultrascale+ Integrated 100 G Ethernet Subsystem

AXI4-S AXI4-Lite AXI4

Fig. 1: General Architecture Overview.

will be reported. Additionally, an ARP request is generated at

startup to notify other network devices in the same LAN.

ICMP module: provides responses to echo request packets,

a.k.a., ping. The module is useful to verify connectivity and

gives a fair estimation of the Round-Trip delay Time (RTT).

Memory Interface: is composed of a Data Mover and

Memory Interface Generator (MIG), both Xilinx IP-Cores.

The MIG exposes a 512-bit AXI4 memory mapped interface

and communicates with the off-chip DDR4 memory. The Data

Mover is in charge of merging data and commands, which are

produced in a streaming fashion, to an AXI4 interface.

Outbound Packet Handler: gathers packets coming from

ARP, ICMP and TOE modules. If needed, a MAC address

lookup, consisting of the IP destination address, is issued to

the ARP module. If the lookup is a hit, the Ethernet header

is constructed using the returned MAC address, prepended to

the packet, and transmitted. Otherwise, the packet is dropped

and an ARP request is generated instead. Moreover, the packet

size is evaluated and padded to 60- Byte if needed.

DMA subsystem: we use the DMA for PCI Express

(PCIe) Subsystem Xilinx IP-Core for providing users access

to memory mapped registers within the logic. Limago uses the

Xilinx’s drivers both for debugging and communication. The

necessary customization is built on top of them.

V. TOE ARCHITECTURE

This section describes the overall architecture of the TOE

(Figure 2). It is divided into three parts, the incoming data

path (Rx Engine), the outgoing data path (Tx Engine), and the

state-keeping data structures [11], [29]. The dash boxes are

optional modules that can be enabled at synthesis.

A. Rx Engine

Incoming packets are processed by the Rx Engine. To verify

the checksum, first the TCP pseudo header is constructed
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and prepended to the packet payload. The pseudo header and

packet payload are then forwarded to the Rx checksum module.

If the result equals to zero, the checksum is valid, and the

packet is passed on to the next module, otherwise it is dropped.

Valid packets are parsed to extract the necessary fields from

the IPv4 and TCP headers, which is done in one clock cycle.

The Rx Engine contains a Finite State Machine (FSM) that

makes decisions based on the extracted fields. First, it looks

up the destination port in the Port Table, if the port is not in the

LISTEN mode the packet is discarded. Next, using the three-

tuple — IP source address, TCP source and destination port

— a look-up to the CuckooCAM is issued. The CuckooCAM

returns a tuple with a boolean indicating if the lookup is a

hit, and a 16- bit sessionID. The sessionID is used as an index

to look-up the state of the connection in all the other tables.

If the lookup was a miss but the packet has the SYN flag

set, the three-tuple is inserted with a new sessionID and a

SYN-ACK event is generated. The FSM uses the sessionID

to retrieve the sequence and acknowledgment number from

the two SAR Tables and, if necessary, updates them. Finally,

if the packet contains a payload, a notification is sent to the

application while the payload is written to the Rx Buffer — in

the case that is enabled. The FSM in the Rx Engine enforces

a strict order of the packets and does not support out-of-order

processing.

B. Data Structures

Session Lookup: provides the means to interface with the

CukooCAM, using the three-tuple to obtain the sessionID. The

sessionID is used to index every data structure to access the

state of the corresponding connection. In case of a SYN or

a SYN-ACK packet, if the three-tuple has not been inserted

yet, it will be inserted using a new sessionID identifying

the new connection. Additionally, the Session Lookup module

contains a table that maps the sessionID to the three-tuple.

This mapping is used by the Tx Engine to generate the IPv4

and TCP headers of outgoing packets.

Port Table: keeps track of the state of each port, which

can be CLOSE, LISTEN or ACTIVE. The standard port range

for static and ephemeral ports are used. If an incoming packet

targets a port in CLOSE state, it is discarded and a RST packet

is generated as a response.

State Table: stores the current state of each connection as

specified by RFC793 [30]. The State Table can be updated

by the Rx Engine when incoming packets are processed and

by the Tx App If when the application opens a connection.

Consistency is guaranteed by using atomic operations.

Timers: this module supports all time-based event trig-

gering as required by the protocol, three timer modules are

implemented: Re-transmission, Probe and Time-Wait Timer.

It follows the same approach of the original version, which

provides linear scaling of on-chip memory.

Event Engine: gathers events from the Rx Engine, the

Timers, and the Tx App If. Consequently, events are merged

and forwarded to the Tx Engine that processes them to generate

the corresponding outgoing packets. Each event will trigger the

generation of a new TCP packet.

Buffering and Window Management: Since TCP is a

stream-based protocol, it requires buffering on the receiving

and transmitting side. On the receiving side, data is buffered in

case the application is not able to immediately consume it. On

the sending side, buffering is required for re-transmission in

case of packet loss. Thus, when supporting multiple connec-

tions, the amount of memory that is needed increases linearly

with the number of connections. For more than ten concurrent

connections, the routing of on-chip memory becomes very

complex and using DRAM to store the payloads becomes

therefore mandatory. For every connection the memory buffer

is logically implemented as a circular buffer which is stored in

a fixed and pre-allocated segment within the off-chip memory.

Stored in the Tx and Rx SAR Tables there are pointers,

e.g., ack’ed, transmitted. which represent the state of the TCP

window of each connection at a given time. The information

stored in these tables is mandatory to handle the segmentation

and reassembly (SAR) of packets. Moreover, to support the

Window Scale TCP option, the Tx SAR Table stores the

Window Scale negotiated when the connection is established.

This value defines the size and boundaries of the buffer.

Statistics: this module gathers events for inbound and

outbound packets. The values can be read through an AXI4-

Lite interface using the DMA subsystem. This element is

optional and can be removed at synthesis.

C. Tx Engine

Each event triggers the generation of a new packet; the

packet generation is done by the Tx Engine. The source of

new packets can be the user application by either initiating

a data transmission or by opening a new connection, which

triggers a SYN packet. The Rx Engine generates events that

generate ACK packets, including SYN-ACK. The Timers mod-

ule triggers timeout-related events, such as re-transmission,

probe packets and FIN packets for teardown. Like the Rx
Engine, the Tx Engine has a FSM to handle each possible
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Fig. 3: TOE Interconnection Schemes

event. Contrary to Rx Engine, since each event carries the

sessionID and event type, the sessionID is known when the

event arrives. Consequently, the data-structures are queried

immediately getting the necessary metadata to generate the

packet. The Destination IP address and TCP ports are queried

from the Session Lookup. Once the metadata is retrieved, the

TCP pseudo header can be built. If the packet has payload,

it is fetched from the external memory or directly from

the application. Prepending the TCP pseudo header with the

payload, the Tx Checksum computes the TCP checksum. Later,

the IP header is prepended to the TCP packet. Finally, the

packet is forwarded to the Outbound Packet Handler.

VI. EVALUATION

A. Setup

The evaluation of Limago covers both functionality and

performance. In terms of functionality, first the ARP and ICMP

modules were tested using Linux-GNU’s arping and ping
programs. Then, to test the TOE, we implemented an echo

server transmitting the received payload back to the sender.

Such a design allows to test both the Rx and Tx Engines. The

same echo server is used to verify the correct functionality of

the internal elements as well as verifying connectivity.

For the performance evaluation, we use iPerf [31] ver-

sion 2. We implemented iPerf in hardware, using Vivado-

HLS, supporting both client and server modes. As a client, the

application actively opens a connection and sends data at the

highest possible rate to the server. As a server, the application

waits for a SYN packet to establish a new connection. Once the

connection is established, the client starts transmitting data and

the application on the FPGA consumes the incoming payload

while the TOE acknowledges the received packets. We have

also built a user program on top of the Xilinx DMA driver to

interact with the iPerf application deployed on the FPGA.

Limago was tested using two different configurations

(Fig. 3). Scheme 1 corresponds to a standard implementation,

each TOE communicates with the corresponding CMAC, and a

100G cable connects both CMACs. In this case the maximum

throughput is limited by the Ethernet connection. Scheme 2

removes the Ethernet CMAC and connects the TOE using a

512-bit AXI4-Stream interface clocked at 322 MHz. The idea

behind this configuration is to verify the maximum throughput.

In the second configuration, we also have tested replacing
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DDR4 with a 512 KiB URAM — Scheme 2(b). This allows

us to verify the physical bounds for each part of the design.

B. Bandwidth

To test the bandwidth of Limago we measured the through-

put under two configurations (Fig. 4) one to test the throughput

over a network and another to test the maximum processing

rate of Limago when not limited by the network. In this

experiment, TOE0 transmits data to TOE1, i.e, only the mem-

ory attached to TOE0 is involved. The throughput reported

measures the complete Ethernet frame, i.e., including the

Ethernet, IP and TCP headers as well as the payload. In

this experiment, the application transmitted segments ranging

between 1024- Byte to 4096- Byte in steps of 64- Byte, using

only one connection, each experiment lasted five minutes. For

scheme 1, using external DRAM and transmitting packets over

the 100 Gbit/s Ethernet link, the throughput is bound by the

network. Scheme 2, using DRAM, Limago transmits more

than 100 Gbit/s for all cases. However, beyond 2048- Byte

segment size, the DRAM bandwidth limits the throughput.

Scheme 2(b), using on-chip URAM, looks like a logarithmic

function where the throughput increases with an increasing

segment size. These experiments show that Limago is able to

surpass 100 Gbit/s when it is not bound by network.

We also have carried out experiments with multiple con-

nections at the same time. For those experiments we have

used two servers and a Huawei cloudEngine 8800 switch. The

specifications of the severs are as follows: both servers run

on a 4.14.7-gentooHPC OS and use a Mellanox MT27800

ConnectX-5 100 Gbit/s NIC; server A has an Intel Xeon CPU

E5-2630 v4 at 2.20 GHz and 128 GB of RAM memory,

whereas, server B has an Intel Xeon Gold 6126 CPU at

2.60 GHz and 192 GB of RAM memory. All offloading capa-

bilities have been enabled in both machines, using ethtool.

We use iPerf to test the performance, this time the servers work

as a client, which means they send the data. Three different

scenarios have been evaluated, each server individually and

both servers combined. For both servers combined, each one

contributes with half of the connections. The number of con-

current connections range from two to thirty in steps of two,

each test lasted five minutes and was repeated five times, we
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used the maximum packet size which is 1460- Byte. Figure 5

shows the results — which are measured at the application

level — the mean and standard deviation are plotted, as

well as the theoretical maximum. In general, the performance

increases with a higher number of concurrent connections,

until it is stable. With regard to both servers sending data

simultaneously, a better performance is not observed, from

this we notice that the switch could be the bottleneck. Further

experiments are necessary to confirm this.

C. Resource Usage and Code Complexity

Limago has been implemented using Vivado and Vivado

HLS 2018.2. The prototype uses a VCU118 board with a

Virtex Ultrascale+ FPGA. Table I list the BRAM usage of the

TOE for a wide variety of number of connections at a specific

Window Scale. The LUTs and Flip-Flop cost is omitted to due

to small difference between the different scenarios — 36 K to

41 K. As explained earlier and confirmed by the actual BRAM

usage, the data structures in our implementation scale linearly

with the number of supported connections.

The resource usage of Limago for 10,000 connections and

no Window Scale is listed in Table II. The overall LUT usage

is at 10% whereby 3.1% is used by the TOE. The TOE is also

1.5% of the available Flip-Flops which is around 20% of the

total usage. But at the same time 90% of the logic resources

are still available and can be used to deploy an application on

the FPGA. BRAM capacity is a scarcer resource, the TOE uses

almost 12% of them, overall around 80% of BRAM and 100%

URAM capacity is still available for further use. The table

also shows the resource summary for the 10 G starting point

implementation, the resources of the TOE increased by a factor

of 1.2 to 2.1. The overall logic resources increased by a factor

of two and the BRAM usage by 20%. Particularly noteworthy,

the tenfold bandwidth increase, at worse, only requires twice

as much resources.

Limago has ten core modules, seven of them are written in

HLS. Apart from the checksum, the other two HDL modules

are straightforward, however determinism is needed. We used

cloc [32] to count the lines of code (no headers), the HLS part

is 7,456 lines; whereas the HDL is 1,482 lines.

TABLE I: No. of BRAM18 for different TOE configurations.

#conn

Window Scale

0 1 2 3 4 5 6 7

Number of BRAM18

1 198 221 221 222 222 222 222 222

128 202 225 225 226 226 226 226 226

512 202 225 225 226 226 226 226 226

1,024 204 227 227 233 233 233 233 233

2,048 228 251 251 257 257 257 257 257

4,096 276 299 299 305 305 305 305 311

8,192 371 397 397 403 403 409 409 414

10,000 495 514 514 520 526 532 538 544

16,384 566 602 613 619 625 631 637 643

32,768 974 1,023 1,035 1,047 1,059 1,071 1,083 1,095

65,536 1,774 1,843 1,867 1,891 1,915 1,947 1,963 1,995

TABLE II: Full design resource usage on VCU118

Element LUT FF BRAM
100 G

Memory 17,423 1.5% 25,995 1.1% 41.5 1.9%

CMAC 14,614 1.2% 39,550 1.7% 26.5 1.2%

ARP 1,260 0.1% 3,193 0.1% 1.5 0.1%

ICMP 2,056 0.2% 5,561 0.2% 0 0.0%

Inbound 1,816 0.2% 6,293 0.3% 8.5 0.4%

Outbound 2,680 0.2% 9,324 0.4% 34 1.6%

CuckooCAM 2,095 0.2% 1,392 0.1% 36 1.7%

TOE 36,469 3.1% 36,229 1.5% 247.5 11.5%

Total 119,844 10.1% 178,339 7.5% 441.5 20.4%
10 G

TOE 15,415 1.3% 16,616 0.7% 186.5 8.7%

SmartCAM 2,201 0.2% 1,772 0.1% 57.5 2.7%

Total 77,393 6.6% 85,306 3.6% 369 17.1%

VII. CONCLUSIONS

Limago is an open-source [33] 100 Gbit/s TCP/IP stack

that can be implemented on FPGA to enable research and

development in programmable NICs and in-network comput-

ing. Starting from a pre-existing stack operating at 10 Gbit/s,

Limago provides a tenfold increase in bandwidth at the cost

of a mere 20% increase in BRAM usage, without jeopardizing

the ability to support multiple connections of the original

design, and maintaining the same design methodology based

on Vivado-HLS. The current prototype has been implemented

and successfully tested on Xilinx VCU118 and Alveo U200

boards. Future work includes further optimizations of the

stack to, e.g., enable reordering of out-of-order packets and

additional TCP features taking advantage of the increasing

availability of High Bandwidth Memory in FPGAs. This

feature will improve the throughput when packet loss occurs

as well as support application level processing [34], [35].
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